Proving Trigonometric Identities: cosA/(1-sinA) (1-sinA)/cosA
To prove the equation frac{cos A}{1 - sin A} frac{1 - sin A}{cos A}, we can start by cross-multiplying to eliminate the fractions. This yields:
Step 1: Cross-Multiplication
Cross-multiplying the given equation gives:
cos^2 A (1 - sin A)(1 - sin A)
Step 2: Simplify the Right-Hand Side
The right-hand side can be simplified using the difference of squares:
cos^2 A 1 - 2sin A sin^2 A
Using the Pythagorean identity:
cos^2 A sin^2 A 1
We can express the equation as:
1 - sin^2 A cos^2 A
Step 3: Equate the Simplified Form
Substituting this back into our original equation gives us:
cos^2 A cos^2 A
As both sides are now equal, this proves that:
frac{cos A}{1 - sin A} frac{1 - sin A}{cos A}
Alternative Proofs
Proof 1
Let's consider another proof by LHS manipulation:
LHS frac{cos A}{1 - sin A} frac{cos A(1 sin A)}{(1 - sin A)(1 sin A)} frac{cos A (1 sin A)}{1 - sin^2 A} frac{cos A (1 sin A)}{cos^2 A} frac{1 sin A}{cos A} RHS
Proof 2
Another verification involves a step-by-step breakdown:
1 - sin A cos A / (1 - sin A)
Multiplying both sides by cos A in the numerator and denominator gives:
frac{1 - sin A}{cos A} frac{cos A}{1 - sin A}
Proof 3
Let's use a different method involving manipulating the given expression:
Define:
x frac{1 - sin A}{cos A} frac{1 - sin A}{1 - sin A}
By Dividendo:
frac{x - 1}{1} frac{cos A}{1 - sin A} frac{cos A(1 sin A)}{(1 - sin A)(1 sin A)} frac{cos A(1 sin A)}{cos^2 A} frac{1 sin A}{cos A}
By Componendo:
frac{x 1}{1} frac{1 sin A}{cos A}
Substituting back, we get:
frac{1 - sin A}{cos A} frac{1 - sin A}{cos A}
Validity of the Identity
Note that the identity holds true as long as cos A eq 0 and 1 - sin A eq 0. If cos A 0 text{ or } sin A -1, the identity does not hold due to undefined or zero denominators. Specifically, this occurs when A kfrac{pi}{2}, where k is an odd integer.